K_m (CO₂) VALUES OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE IN GRASSES OF DIFFERENT C₄ TYPE

HOCK-HIN YEOH* and PAUL HATTERSLEYT

*Department of Botany, National University of Singapore, Kent Ridge, Singapore 0511; †Taxonomy Unit, Research School of Biological Sciences, Australian National University, Canberra, A.C.T. 2601, Australia

(Received 15 January 1985)

Key Word Index—Grasses; Gramineae; ribulose-1,5-bisphosphate carboxylase; C₄ types; photosynthesis; systematics.

Abstract—Statistical analysis of K_m (CO₂) values of ribulose-1,5-bisphosphate (RuBP) carboxylase from 35 C₄ grass species shows that the mean value for PEP-carboxykinase (PCK) type C₄ species (41.4 ± s.e. 2.2 μ M CO₂) is significantly different from that of NAD-malic enzyme (NAD-ME) type species (55.3 ± 3.1 μ M CO₂) or NADP-malic enzyme (NADP-ME type species (52.5 ± s.e. 2.0 μ M CO₂). These C₄ type differences remain detectable within both the eu-panicoid and chloridoid grass subfamilies. By contrast, no between-subfamily differences were found within C₄ types. Variation in K_m (CO₂) values of RuBP carboxylase may be related to *in vivo* differences in CO₂ concentration at the enzyme site, mediated perhaps by differences in CO₂-leakiness of C₄ leaf 'photosynthetic carbon reduction' (PCR or 'Kranz') tissue.

INTRODUCTION

Studies of the kinetic properties of RuBP carboxylase from taxonomically diverse plants, including grasses, show that differences in K_m (CO₂) values are correlated with variation in photosynthetic pathway, namely C₃ versus C₄ [1, 2]. The C₄ plant enzyme (especially from grasses) was found to have a lower affinity than that from C₃ terrestrial plants, perhaps because RuBP carboxylase is confined to the CO₂-tight 'photosynthetic carbon reduction' (PCR or 'Kranz') tissue in C₄ plant leaves.

Within grasses, the data also suggested K_m (CO₂) value differences between C₄-acid decarboxylation types [1], viz. NADP-malic enzyme (NADP-ME), NAD-malic enzyme (NAD-ME), or PEP-carboxykinase (PCK) type [3]. The species sample, however, was too small to yield a conclusive result on this point. We have therefore determined K_m (CO₂) values for 13 additional species, deliberately selected to supplement the original data for 24 C₄ grasses [1], in order to clarify whether K_m (CO₂) values are most highly correlated with C₄ type or grass subfamily.

RESULTS AND DISCUSSION

Table 1 shows the K_m (CO₂) values of RuBP carboxylase from 35 C₄ grass species, a sample comprising 13 PCK-type, 13 NADP-ME, and 8 NAD-ME type species. Within each C₄ type, the major grass subfamilies in which the type occurs, are about equally represented (cf. [4]). Of the additional species now sampled (Table 1), typical C₃ K_m (CO₂) values are exhibited by the two C₃ species included for comparison, and values for the C₄ species are also consistent with the earlier results for that type [1].

The results clearly show that the mean K_m (CO₂) value of PCK-type C₄ grasses (41.4 ± s.e. 2.2 μ M CO₂; excluding *Triraphis mollis*) is significantly different from the

mean value of NAD-ME type species ($55.3 \pm s.e. 3.1 \mu M$ CO₂; P < 0.002) and from that of NADP-ME type species ($52.5 \pm s.e. 2.0 \mu M$ CO₂; P < 0.01). NADP-ME and NAD-ME type means do not differ significantly, even at the 10% probability level.

T. mollis (chloridoid or danthonioid) can be tentatively classed as PCK-type, on the basis of its leaf anatomy, and including it in the analysis does not alter the probability levels. Neurachne munroi is of unknown C_4 type, and belongs in an endemic Australian genus containing C_3 , C_4 and C_3 - C_4 intermediate species [5]. Even in this genus, K_m (CO₂) values for a C_3 species (N. alopecuroidea) and a close C_3 relative (Thyridolepis mitchelliana) are characteristically different from that of the C_4 species, N. munroi (Table 1)

Within subfamilies, the sample sizes are too small for valid statistical analysis. Nevertheless, differences between C₄ types are detectable even here, viz. comparing PCKtype eu-panicoids (40.2 \pm s.e. 3.2 μ M CO₂) with NAD-ME eu-panicoids $(57.4 \pm \text{s.e.} 3.2 \,\mu\text{M} \text{CO}_2)$ and with NADP-ME eu-panicoids (52.3 \pm s.e. 3.3 μ M CO₂), and comparing PCK-type chloridoids (42.7 \pm s.e. 3.3 μ M CO_2) with NAD-ME type chloridoids (51.7 \pm s.e. 6.7 μ M CO₂). Within C₄ types, on the other hand, there is no obvious difference in K_m (CO₂) values between eupanicoids and chloridoids for either PCK or NAD-ME type C₄ species (Table 1). Similarly, within the NADP-ME type, there is no significant difference (P > 0.10)between NADP-ME eu-panicoids (52.3 \pm s.e. 3.3 μ M CO_2) and NADP-ME andropogonoids (52.7 \pm s.e. 2.4 μ M CO₂). Although the mean K_m (CO₂) value for total eu-panicoids (49.7 \pm s.e. 2.5 μ M CO₂; n = 18) is higher than that for total chloridoids (45.7 \pm s.e. 3.2 μ M CO₂; n = 9), the difference is not significant even at the 10%probability level; the higher eu-panicoid mean is consequent upon the fact that, of these two subfamilies, only

Table 1. K_m (CO₂) values of ribulose-1,5-bisphosphate carboxylase for grasses of different C₄ type

Photosynthetic pathway	Grass subfamily	[Species]	$K_m(CO_2) \pm s.e.$ (μM)
C ₄ PCK	chloridoid	Chloris truncata R. Br.	24 2
	Cinoridola		34±2
		Eragrostis chloromelas Steud.	46±3
		*E. philippica Jedw.	46±2
		*Sporobolus elongatus R. Br.	55±9
		S. africanus (Poir.) Robyns et Tournay	41 ± 7
		Zoysia macrantha Desv.	34±4
		Triraphis mollis R. Br.	39±5
	eu-panicoid	*Brachiaria foliosa (R. Br.) Hughes	44±5
		B. lorentziana (Mez) Parodi	28±2
		*Eriochloa meyeriana (Nees) Pilg.	45±5
		*Panicum laevifolium Hack.	50±4
		P. maximum Jacq.	37±5
		*Rhynchelytrum repens (Willd.) C. E. Hubbard	37±6
C₄NADP-ME	andropogonoid	Bothriochloa macra (Steud.) S. T. Blake	51 ± 5
		Cymbopogon refractus (R. Br.) A. Camus	52±11
		Imperata cylindrica (L.) Beauv.	62±8
	•	Sorghum bicolor (L.) Moench	50±4
		Themeda australis (R. Br.) Stapf	45±9
		Zea mays L.	56±5
	eu-panicoid	Axonopus compressus (Swartz) Beauv.	61 ± 15
		Echinochloa crus-galli (L.) Beauv.	57 ± 21
		Panicum antidotale Retz.	53±3
		*P. bulbosum H.B.K.	56 ± 1
		Pennisetum typhoides (Burm.) Stapf & Hubb.	54±3
		Setaria geniculata (Lam.) Beauv.	51 ± 2
		Spinifex hirsutus Labill.	34+9
C₄NAD-ME	chloridoid	*Buchloë dactyloides (Nutt.) Engelm.	50±8
		Eleusine coracana (L.) Gaertn.	41 ± 5
		*E. indica (L.) Gaertn.	64±4
	eu-panicoid	*Panicum capillare L.	62±3
		P. decompositum R. Br.	59±5
		P. lanipes Mez	45±1
		P. miliaceum L.	58±6
		P. stapfianum Fourc.	63±8
C ₄ , unknown type	eu-panicoid	*Neurachne munroi (F. Muell.) F. Muell.	32±3
C ₃	eu-panicoid	*Neurachne alopecuroidea R. Br.	19±1
	on-barrioore	*Thyridolepis mitchelliana (Nees) S. T. Blake	23±3

Asterisked species are those for which original data are presented; other data from [1]. Refer to ref. [3] for biochemical basis of C_4 acid decarboxylation types. Two C_3 species are included for comparison.

eu-panicoids contain NADP-ME type C₄ species.

Since variation in K_m (CO₂) values of grass RuBP carboxylases is predictable via C₄ type irrespective of high level taxonomic groups, the correlations with C₄ type may be of functional significance, related to differences in CO₂ concentration at the site of RuBP carboxylase, within the PCR (or 'Kranz') compartment in C₄ plant leaves. This may in turn be a direct consequence of general differences between C₄ types in degree of 'CO₂-tightness' of the PCR compartment. The latter have already been inferred from the known differences between C₄ type in structure [6], δ^{13} C values [7], and absorbed quantum yield for CO₂ uptake [8]. It has been suggested [6, 7] that NADP-ME species have the most CO₂-tight PCR compartment, and NADP-ME type species the least, with PCK-type species being intermediate. The difference in mean K_m (CO₂)

value between NADP-ME and PCK type species is qualitatively compatible with such a hypothesis. However, the similar mean K_m (CO₂) values for NAD-ME and NADP-ME types are inconsistent with the notion that the former have the least CO₂-tight PCR compartment. Rather, they indicate that alternative or additional explanations suggested for variation in, for example, δ^{13} C values [7] may hold. There remains the possibility therefore that variation in K_m (CO₂) values of RuBP carboxylase for different C₄ types, may also reflect differences in features other than (or additional to) 'CO₂-leakiness'. Variation in the catalytic capacity (kcat) of RuBP carboxylase between grasses has been suggested as perhaps functionally more pertinent than variation in K_m (CO₂), though these two kinetic parameters seem to be mechanistically related [9].

EXPERIMENTAL

Plant material. Plants were grown from seeds in a greenhouse at NUS. Species identify was checked with reference to appropriate regional floristic works, and vouchers retained.

Enzyme preparation and assay. RuBP carboxylase was extracted in 100 mM Bicine-NaOH buffer pH 8, containing 25 mM MgCl₂ and 5 mM DTT and partially purified by elution through Sephadex G-25 in the same buffer. The enzyme was preactivated in 10 mM NaHCO₃ and then assayed by measuring the fixation of (¹⁴C) bicarbonate in a CO₂-free system according to ref. [1]. The CO₂ concn was then calculated from the pH and HCO₃ concentration using the Henderson-Hasselbach equation and the pK' value of 6.37 at 25° [2, 10].

REFERENCES

 Yeoh, H. H., Badger, M. R. and Watson, L. (1980) Plant Physiol. 66, 1110.

- Yeoh, H. H., Badger, M. R. and Watson, L. (1981) Plant Physiol. 67, 1151.
- Hatch, M. D. (1976) Plant Biochemistry (Bonner, J. and Varner, J., eds.) p. 797. Academic Press, New York.
- Watson, L. and Dallwitz, M. J. (1980) Australian Grass Genera. Anatomy, Morphology, and Keys. Research School of Biological Sciences, The Australian National University, Canberra.
- Hattersley, P. W., Watson, L. and Wong, S. C. (1984) Advances in Photosynthesis Research (Sybesma, C., ed.) p. 403. Martinus Nijhoff/Dr W. Junk, The Hague.
- Hattersley, P. W. and Browning, A. J. (1981) Protoplasma 109, 371.
- 7. Hattersley, P. W. (1982) Aust. J. Plant Physiol. 9, 139.
- 8. Ehleringer, J. and Pearcy, R. W. (1983) Plant Physiol. 73, 555.
- Seeman, J. R., Badger, M. R., and Berry, J. A. (1984) Plant Physiol. 74, 791.
- Umbreit, W. W., Burris, R. H. and Stauffer, J. F. (1972).
 Manometric and Biochemical Techniques, 5th edn, p. 20.
 Minneapolis Burgess.